cryptographic ambiguity - ορισμός. Τι είναι το cryptographic ambiguity
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι cryptographic ambiguity - ορισμός

THE TENDENCY TO AVOID OPTIONS FOR WHICH THE PROBABILITY OF A FAVORABLE OUTCOME IS UNKNOWN
Ambiguity Effect; Ambiguity bias

one-way hash function         
SPECIAL CLASS OF HASH FUNCTION THAT HAS CERTAIN PROPERTIES WHICH MAKE IT SUITABLE FOR USE IN CRYPTOGRAPHY
Message digest; Cryptographic hash; Cryptographic message digest; One-way hash; Modification Detection Code; Cryptographic hash functions; Hash function (cryptography); One-way hash function; CRHF; Secure hash function; One way encryption; Numerical hash; Cryptograhic hash; Cryptographic hash value; Cryptographic Hash Function; Cryptographic one-way hash function; Message-digest; Message-digest algorithm; Sphincter hash; Terahash; Cryptographic hashing; Wide pipe; Wide pipe hash; Wide pipe design; Wide pipe construction; Wide-pipe; Widepipe; Narrowpipe; Narrow-pipe; Narrow pipe; Applications of cryptographic hash functions; Cryptographic hashes; Hash (cryptography)
<algorithm> (Or "message digest function") A {one-way function} which takes a variable-length message and produces a fixed-length hash. Given the hash it is computationally infeasible to find a message with that hash; in fact one can't determine any usable information about a message with that hash, not even a single bit. For some one-way hash functions it's also computationally impossible to determine two messages which produce the same hash. A one-way hash function can be private or public, just like an encryption function. MD5, SHA and Snefru are examples of public one-way hash functions. A public one-way hash function can be used to speed up a public-key digital signature system. Rather than sign a long message, which can take a long time, compute the one-way hash of the message, and sign the hash. {sci.crypt FAQ (ftp://src.doc.ic.ac.uk/usenet/usenet-by-group/sci.crypt/)}. (2001-05-10)
Amphibolous         
SENTENCES WITH STRUCTURES PERMITTING MULTIPLE POSSIBLE INTERPRETATIONS
Amphibology; Amphiboly; French push bottles up German rear; Amphibologies; French push bottles up german rear; Amphibolous; Crash blossom; Crash blossoms; Structural ambiguity; Ambiguous sentence structure; Locally ambiguous sentence; Globally ambiguous sentence; Grammatical ambiguity; Ambiguous syntax; Syntactic disambiguation; Models of syntactic ambiguity; Ambiguity (syntax); Syntactically ambiguous; Phrase structure ambiguity; Structural disambiguation; Syntactical ambiguity; Crash Blossoms; Fallacy of amphiboly
·adj Ambiguous; doubtful.
II. Amphibolous ·adj Capable of two meanings.
Amphibologies         
SENTENCES WITH STRUCTURES PERMITTING MULTIPLE POSSIBLE INTERPRETATIONS
Amphibology; Amphiboly; French push bottles up German rear; Amphibologies; French push bottles up german rear; Amphibolous; Crash blossom; Crash blossoms; Structural ambiguity; Ambiguous sentence structure; Locally ambiguous sentence; Globally ambiguous sentence; Grammatical ambiguity; Ambiguous syntax; Syntactic disambiguation; Models of syntactic ambiguity; Ambiguity (syntax); Syntactically ambiguous; Phrase structure ambiguity; Structural disambiguation; Syntactical ambiguity; Crash Blossoms; Fallacy of amphiboly
·pl of Amphibology.

Βικιπαίδεια

Ambiguity effect

The ambiguity effect is a cognitive bias where decision making is affected by a lack of information, or "ambiguity". The effect implies that people tend to select options for which the probability of a favorable outcome is known, over an option for which the probability of a favorable outcome is unknown. The effect was first described by Daniel Ellsberg in 1961.